

ISSUE 4 | FALL 2025

Joe Page Bridge Project **BACKGROUND**

In 2022, the Illinois Department of Transportation (IDOT) began conducting a Phase I Preliminary Engineering and Environmental Project for the Joe Page Bridge. The purpose of the Project is to identify a reliable and efficient crossing of the Illinois River between Calhoun, Greene and Jersey counties that is structurally sound and meets current design standards. The existing bridge, originally built in 1931, is nearing the end of its expected service life.

As part of this Project, a Community Advisory Committee (CAG) was established to provide the Project Study Group (PSG) with local knowledge and community concerns as the Preferred Alternative is developed. The CAG, made up of representatives from local agencies, businesses, residents, and special interest groups, has met three times and should meet again in 2026 and 2027. Three Public Meetings have also been held. All information regarding the CAG and Public Meetings can be found at www.JoePageBridge.com.

IDOT projects are completed in three phases.

During Phase I, a study takes place to identify and refine alternatives, screen the alternatives to determine if they are feasible, and evaluate potential impacts to the environment. In Phase II, final engineering and design takes place to get the project ready for construction and any necessary land is acquired. Phase III is the actual construction of the project.

Preliminary Engineering and Environmental Studies

PHASE II 24 - 36 MONTHS

Contract Plan Preparation & Land Acquisition

PHASE III

36 MONTHS
Construction

PROJECT PROGRESS

Corridor Alternatives

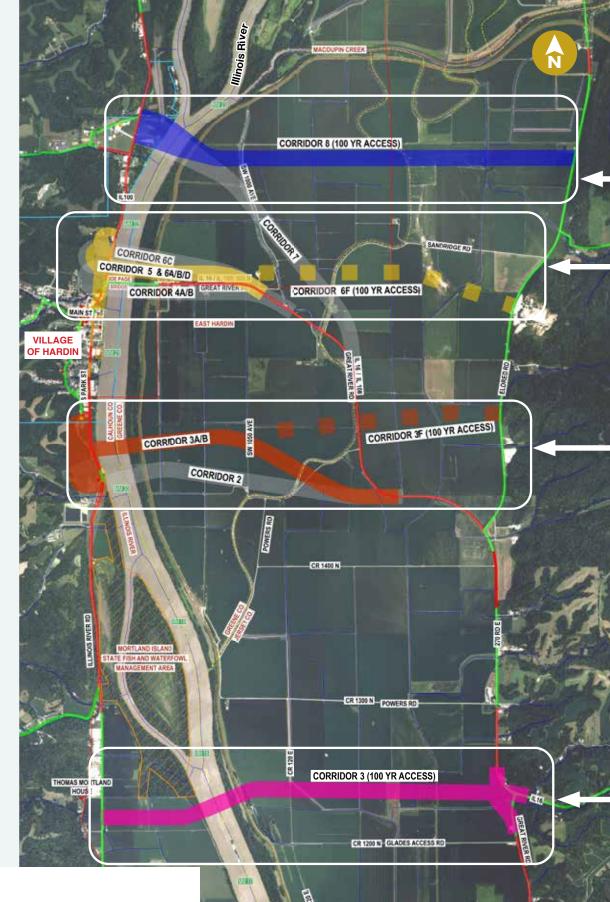
The most recent public meeting held in September 2024 was attended by 104 individuals. Eight corridor alternatives were presented including evaluation criteria such as the Purpose and Need, roadway geometrics, permanent traffic configuration, roadway cross section, maintenance of traffic during construction, environmental impacts, river impacts, construction cost, and annual operation/maintenance costs. Of the initial eight corridors, four are recommended to move forward with additional alternatives for corridors 3 and 6 to provide alternate tie-in points and access up to a 100-year flood event. Each of the four river flow regions includes a corridor alternative that provides access during a 100-year flood event. The corridor alternatives being carried forward (1, 3A, 3B, 3F, 6A, 6B, 6D, 6F, and 8) are shown in color on this map. Those that have been eliminated from further consideration are shown in a light gray. Corridor alternatives were eliminated due to environmental impacts, river impacts and costs.

Following the September 2024 public meeting, IDOT presented the corridor alternative evaluation to the Federal Highway Administration (FHWA) in February 2025. At this meeting the FHWA approved the corridor alternatives to be carried forward for further evaluation. This also includes the no build corridor alternative as a baseline condition to measure the build alternatives against even though it does not meet the project Purpose and Need.

RECOMMENDED CORRIDORS

The chart below shows how each Corridor was rated by each criterion and those that will be carried forward for further evaluation

Meets Purpose	No-Build			REGION 2			REGION 3							REGION 4	
Meets Purpose	INO-BUIIG	Rehabilitation	Cor 1	Cor2	Cor 3A	Cor 3B	Cor 4A	Cor 4B	Cor 5	Cor 6A	Cor 6B	Cor 6C	Cor 6D	Cor 7	Cor 8
and Need	×	×	~	~	~	~	~	~	~	~	~	/	~	V	~
Roadway Geometrics	V	V	~	~	~	~	~	V	~	~	~	/	~	~	~
Permanent Traffic Configuration	v	/	~	~	~	~	/	/	~	~	~	~	~	~	~
Roadway Cross Section	×	*	~	~	~	~	/	/	~	~	~	~	~	~	~
Maintenance of Traffic During Construction	v	*	~	/	~	/				•	•		•		~
Environmental Impacts	v	/	•	×	•	•	×			•	•		•		•
River Impacts	×	*	•	•	•	•			×	•	•		•		•
Construction Cost	?	?	•	~	~	~		/		•	~	×	~	~	~
Annual Operation/ Maintenance Cost	×	×	~	~	~	~	~	V	×	~	~	/	~	~	~
Public Involvement	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	Carried Forward	NOT Carried Forward	Carried Forward	NOT Carried Forward	Carried Forward		NOT Carried Forward			Carried Forward Ca		NOT Carried Forward	Carried Forward	NOT Carried Forward	Carried Forward



Corridor variations, shown with a dashed line, have been added to provide access to the bridge during a 100-year flood event.

REGION 4

REGION 3

REGION 2

REGION 1

BRIDGE MAINTENANCE

To keep the existing bridge SAFE and RELIABLE, work will continue beyond routine maintenance, until a new bridge is built and in service. The bridge was closed from May 12 – May 23, 2025, for structural repairs. Additional comprehensive rehabilitation services to extend the service life of the structure are planned, including an upcoming structural and electrical repair project in the next few years. The upcoming work encompasses structural, mechanical, electrical, and fender rehabilitation to ensure the bridge's safety, functionality, and longevity.

Structural Rehabilitation: The structural rehabilitation involves the repair and reinforcement of the bridge's primary load-bearing elements. This includes the strengthening of deteriorated steel components, repair of the bridge deck, and addressing any corrosion issues to enhance the overall structural integrity.

Mechanical Rehabilitation: Mechanical rehabilitation focuses on the bridge's movable parts, ensuring that the mechanisms responsible for the bridge's operation are in optimal condition. This includes improvements to the bridge's lifting system, repair or replacement of select components, and lubrication of all moving parts to ensure smooth and reliable operation.

Electrical Rehabilitation: The electrical rehabilitation focuses on repairing the aging electrical system and incorporating modern standards where feasible to extend the service life of the structure. This involves the replacement of outdated wiring, installation of new control panels, and integration of advanced monitoring systems to enhance the bridge's operational efficiency and safety.

Fender Rehabilitation: Fender rehabilitation is crucial for protecting the bridge from potential impacts by marine traffic. This includes the repair and replacement of damaged fender systems and reinforcement of existing structures to ensure the bridge's resilience against collisions.

LEGEND

---- Nutwood Levee

----- County Line
---- City Limits

Park and Waterfowl

— E— Transmission Lines

 Potentially Eligible Historic Property Public Service

MM21 River Mile Marker

Existing Roadway Impacts

Outside 100 YR Boundary
Inside 100 YR Boundary

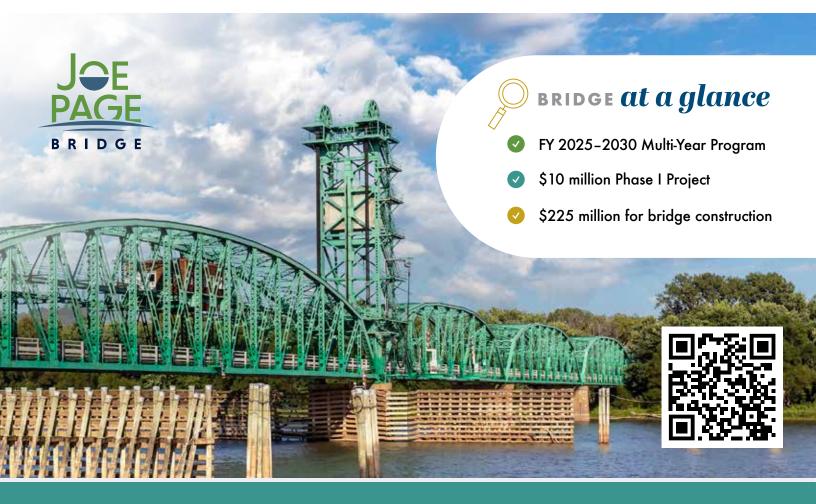
Below 100 YR BFE
Outside Effective Boundary

PROJECT PROGRESS

Phase I Engineering

Engineering activities have ramped up since the last meeting to further evaluate the alternatives being carried forward in greater detail. This includes the development of hydraulic models of various Illinois River flood frequencies to determine how the existing and proposed conditions will be impacted by river levels as well as to determine how the alternatives may impact river levels. Further, a travel impact calculation tool to evaluate how motorist travel during the existing and proposed conditions is impacted by roadway, ferry, or bridge closures was developed to quantifiably shed light on how these events impact travel times for various Illinois River conditions. Coordination with the Illinois Department of Natural Resources, the US Coast Guard and the US Army Corp of Engineers has continued to refine study criteria. Additional work underway includes bridge and roadway profile design, and structure configuration evaluation to further refine the alternatives being carried forward. All these activities are intended to provide additional evaluation criteria to be presented at the Community Advisory Group and Public Meetings anticipated to occur in 2026.

PROJECT PROGRESS


Environmental

In order to ensure transportation projects are in compliance with state and federal environmental laws and regulations, IDOT uses special technical expertise to conduct surveys, review and/or prepare environmental documents, and coordinate projects with state and federal resource agencies. IDOT also oversees and coordinates the activities of University of Illinois scientists and specialists located within the Illinois Natural History Survey, the Illinois State Archaeological Survey, and the Illinois State Geological Survey who conduct a variety of scientific surveys. Some of the surveys currently underway include:

- Threatened and endangered species or suitable habitat for these species protected under the Endangered Species Act and the Illinois Endangered Species Act.
- Streams, waterways and wetlands protected under the Clean Water Act and Illinois Interagency Wetland Policy Act.
- Cultural resources for both archaeological (artifacts, tools, jewelry, buildings, tombs and burial mounds) and architectural/historic (structures, houses, bridges, buildings, districts).
- Prime and Important Farmland identification and farmland agency review to lessen conversion impacts.
- Natural and man-made hazards that may be present on existing IDOT right-of-way or new right-of-way, which could risk worker or public safety, increase IDOT's liability, or cause construction delays and cost overruns.

PHASE I PROJECT TIMELINE

